Computes predicted values for a local model, i.e., a fitted SDMfit object This is sequentially called, for each species, by the function trophicSDM.predict
# S3 method for SDMfit
predict(object, newdata, pred_samples = NULL, prob.cov = TRUE, ...)
A SDMfit object, typically obtained with trophicSDM() and available in the field $model of a trophicSDMfit object
A matrix containing both environmental covariates and the biotic variables that the local model uses to predict the species distribution.
Number of samples to draw from species posterior predictive distribution when method = "stan_glm". If NULL, set by the default to the number of iterations/10.
Only for presence-absence data. If set to FALSE, it gives back also predicted presence-absences (which is then used by trophicSDM.predict to predict the predators).
additional arguments
A list containing for each species the predicted value at each sites. If method = "stan_glm", then each element of the list is a sites x pred_samples matrix containing the posterior predictive distribution of the species at each sites. If prob.cov = TRUE, it returns a list containing:
predictions.probPredicted probabilities of presence
predictions.probPredicted presence-absences
data(Y, X, G)
# define abiotic part of the model
env.formula = "~ X_1 + X_2"
# Run the model with bottom-up control using stan_glm as fitting method and no penalisation
# (set iter = 1000 to obtain reliable results)
m = trophicSDM(Y, X, G, env.formula, iter = 100,
family = binomial(link = "logit"), penal = NULL,
mode = "prey", method = "stan_glm")
#> Warning: The largest R-hat is 1.06, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Warning: The largest R-hat is 1.07, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Warning: The largest R-hat is 1.21, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Warning: The largest R-hat is 1.11, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
# In order to predict non-basal species, we need to also provide
# the predicted occurrences of its preys. Here we compute the probability of
# presence of species Y4 at environemntal conditions c(0.5,0.5)
# when its prey Y3 is present.
predict(m$model$Y4, newdata = data.frame(X_1 = 0.5, X_2 = 0.5, Y3 = 1), pred_samples = 10)
#> $predictions.prob
#> iterations
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> 1 0.4541377 0.4189173 0.4732392 0.4962417 0.4644256 0.4901833 0.4596747
#> iterations
#> [,8] [,9] [,10]
#> 1 0.4637687 0.4795934 0.4618464
#>
#> $predictions.bin
#> NULL
#>